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ANALYSIS AND PREDICTION

METHOD FOR IMPROVING A DYNAMIC MODEL USING
EXPERIMENTAL TRANSIENT RESPONSE DATA

Ching-u Ip, Eli P. Howard and Richard J. Sylvester
Aerospace Corporation
San Bernardino, California

A rational method is developed for improving the mathematical dy-
namic model of a linear system by utilizing experimental results, The
di:a required as input to the method consist of measurements of the
applied load and some limited response information. Two examples
demonstrate the improvement in the mathematical model of a six-
degree-of-freedom system when the loading and limited response in-
formation is known without experimental error. Future eftorts are
outlined to study effects of error in experimental input data and fea-
sibility of application to systems of many degrees of freedom.

E. P. Howard

INTRODUCTION

The dynamic analyses performed to deter-
mine the responses of a structure subjected to
dynamic loads involve the formulation of a
mathematical model that represents the physi-
cal structure. When the structure and loading
are particularly complex, confirmatory experi-
ments are devised to gain confidence in the re-
sults of the mathematical model or to demon-
strate structural integrity, or botl.

A certain degree of confidence in the math-
ematical analysis can be achieved by a ground
vibration test in whkich the ent're structure is
vibrated at a low ievel and the resonant fre-
quencies are identified. However, limitations
in this experimental technique usually preclude
obtaining the mode shapes of the struciure with

the same accuracy as the resonant frequencies.
In addition to a ground vibration survey, dy-
namic load teste are often conducted that sub-
ject full-scale reentry vehicles to a blast wave
in a large shock tube. A facility currently
being utilized for this purpose is the Sandia
Corporation "Thurderpipe" facility at Albu-
querque, New Mexico.

It is the purpose of this paper to present a
method or technique for utilizing experimental
results from such facilities.as the "Thunder-
pipe' to improve the mathematical model rep-
resenting the structure that was tested. The
improvement is achieved by revising the the-
oretically computed mode shapes to be in better
agreement with experimental results.

LIST OF SYMBOLS

[c] Square matrix, damping matrix
{Rty)} Column matrix giving forces act-
ing on various stations (nodes) of
system
i Subscript
(1] Identity matrix

j Subscript
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B}

{at)}

{1

T

fx}, {x}, {x}

{yt)}

{e}

¥i

[«

Square matrix, siiffness matrix
Square matrix, mass matric
Number of modes

Column matrix of generalized dis-
placements

Laplace transform variable

Transformation matrix relating
strains to displacements

Superscript, transpose of a mstrix
Column matrices representing -:3-
placements and their time deriva-
tive

Scale factor

Parameter associated with input
forces and defined as quaatity in-
side large parentheses of Eq. (11}
Shear strain

Parameter associated with input
forces and defined by Eq. (15)

Column matrix of strains
ﬂi/2wi

Diagonai matrix of generalized
modal damping

Modal matrix normalized so that
[p)Timl [¢) = [1)

Function to be minimized and de-
fined by Eq. (2)

Diagonal matrix of squares of cir-
cular frequencics

DESCRIPTION OF METHOD

Thunderpipe Tests

The "Thunderpipe’ test series subjects a

full-size reentry vehicle structure to blasts of
conventional explogive, confined in a closed-end
tube. One objective of the tests is to compare
the measured dynamic response with the the-
oretical predictions to verify the analytical ap-
proach. Specifically, the pressure-time his-
tories at various stations on the reentry vehicle
are measured and are used as the forcing

functions in the analytical model. Measure-
ments by strain gages and accelerometers at
selected locations on the vehicle constitute the
measured responses. ‘inese are used to com-
pare with the caiculated response of the pre-
selected mathematica) model of the dynamic
system subjecied to the measured forcing
function.

Comparison of Experiment
anc Theory

An exact duplication of measured and com-
puted response never occurs in practice. Henc
a quantitative assessment of the degree of cor-
relation is desired to assess the validity of the
mathematical model used in the dynamic anal-
ysis. This study was conducted to determine
the fe2sibility of improving the dynamic model
using measured data from "Thunderpipe" ex-
periments. This study assumes that the instru-
mentation and experimental technique are ade-
quate, and that discrepaacies are due to errors
in formulating the mathematical model or es-
tablishing values of parameters for use in the
model.

This feasibility study is idealized by con-
sidering linear mass-spring-dashpot mechani-
cal systems subjected to transient response
experiments in general, rather than the specifi:
problem of the response of a reentry vehicle in
a shock tube.

Summary of Method

In analyzing the continuous structure to
which the shock is applied, the structure is
approximated by a system of finite elements
consisting of masses, springs, and dashpots.
Since the structure is assumed to experience
small vibrations due to the shock loading, the
finite elemencts are considered to behave lin-
early. Hence, the linear response of the struc:
ture at the mass locations can be determined
by the solution of the equations of motion of the
system of finite elements if the system indeed
represents the structure correctly. The prob-
lem is formulated utilizing matrix noiation to
facilitate the treatment since the mathematical
aspects of the problem usually involve solving
a large number of differential equations simul-
taneously. The large number results from the
large number of finite elements used to repre-
sent the continuous system. The finite element
are represented by (n x n) square matrices with
n being the number of degrees of freedom. The
shock or exiernal disturbance is represented
by a column matrix of forces, with each force




element being a function of time acting on a finite
element or mass.

In the discussion that follows, a formal so-
lution of the equations of motion is derived in
matrix forrr. The responses of the system,
calculated and measured, should agree with one
another. H these do no! agree, cne has to adjust
the values of the 3n? elements in the mass,
spring, and dashpot matrices until agreement
between calculated and measured response is
reached. Since the system is assumed to be
linear, the response can be assumed to be a
linear superposition of its normal modes.
Hence, by filtering the measured response by
adjusting the filter to the measured resonant
frequencies (obtained from a vibration survey),
its modal comy-onents can be obtained. This
can be compared with the normal mode solution
obtained analytically and has the advantage that
one has to adjust the v.lues of only n elements
at one time. This was done in this report with
the aid of a method developed and computerized
at Aerospace Corporation. In this method, the
difference between the calculated and measured
values of the response in a particular mode, i,
constitutes an error. The ¢ furction derived in
the bedy of this report represents the sum of
the squares of all the errors in the ith mode.
This function is to be minimized so that the ex-
perimental data and the calculated 1esults agree
as closely as possible. By adjusting the values
of the n modal elements in the neighborhood of
the calculated values in a random manner and
choosing the better set after each adjustment,
one can find the values of the modal elements
for closest agreement. Tue method described
in this report accomplishes this result in a
systematic way.

Derivation of Method for a Mass-
Spring-Dashpot System
The equations of motion of a linear system
with viscous damping can be written concisely
in the form of a matrix equation:
mI{x} + [cl{x} + [kK]{x} = {F(t)}, (1)

where

im] = square matrix called the

mass matrix,

(el

square matrix called the
damping coefficient matrix,

(k]

square matrix called the
stiffness matrix,

{x},{x}, {x}

column matrices represent-
ing displacencents and their
time derivatives, and

{F(t)} = column matrix giving the
forces acting on various
stations (called nodes) of the
system.

The solution to this equation will be derived
in terms of the normal modes of the system.
Not only {x(t)}, the displacement, but {x(t)},
the velocity, and {x(t)}, the acceleration, were
derived in terms of the normal modes and are
given, respectively, in Eqs. (11), (12), and (13)
which appear later.

It is convenient to treat the transient re-
sponses of the dynamic system as th¢ summa-
tion of the responses of its normal modes. For
a linear dynamic system with damping, the
existence of normal modes is given by a the-
orem of Caughey [1] which can be stated as fol-
lows: "A necessary and sufficient condition
that a linear damped dynamical system possess
classical normal modes is that the damping
matrix be diagonalized by the same transfor-
mation which uncouples the undamped system."
However, if the transformation matrix (4],
which diagonalizes the [m] and (k] matrices of
the undamped system, is found, it will not nec-
essarily diagonalize the [c] matrix of the
damped system; but, for a realistic vibrating
system, the off-diagonal terms of the trans-
formed [c] matrix will be small compared with
the diagonal terms. Hence, the calculated re-
sponses by considering the system possesses
classical normal modes would not differ much
from the actual responses, and the generally
accepted procedure is to ignore the off-diagonal
terms of the modal damping matrix.

Consid-r the modal transformation as de-
fined by

() = [¢l{a(t)}, 2
where [¢) is the modal matrix, normalized
such that ()T (m)(¢] = [1], and {q(t)} is 2

column matrix representing the generalized
displacements.

Substituting Eq. (2) into Eq. (1) and pre-
multiplying by (¢!T results in

@+ Tula + [e?] (g} = [BIT(F(t)}, (3)

where [ ] and [»?] are diagonal matrices
representing the generalized modal damping
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and the normalized stiffness (or the aqruare of
circular frequency), respectively. [(¢]' is the
transpose of the {¢] matrix. Thus, we obtain

@iTimlle) = [71].

ATIl) = [o2]. 4)
and

ig)Ticl o] = [«]

where [1] is the identity matrix.
Taking the Laplace transformation of Eq.

(3), we obtain the transformed equation, after
using the following notations:

{a(s)} = j {a(t)} e-Stde,
)

{F(s)} :J[ {F(t)} e 3tdt ,
° (5)

{x(s)} = [sl{as)},

and
(52[1‘] + Sru,] + [“"21) (ﬁui)} = [zl)]T(f(s)}
+(s{1] + [ xllao}) + {ac0y}.

Premultiplying Eq. (2) by (¢]T[m] and using the
normalization property given in Eq. (4), we ob-
tain the following equation:

{att)) = (1T ml ()}, (6)
where the initial conditions are given by

{q(0)} = [HT(m){x(0)}
and (7

{a(0)r = (@) (m){x(0y} .

From Eq. (5) we obtain

{x(s)} = [H{a(s)}

1 _
= [‘f’] r————l——‘——J ‘-’f?]T"F(S)}

s+ oy _
+ (¢ [-2 2] [#]T Im) {x(0)}
s+ su. + 4
r 1 o oo
+ (@) | —=———— 1 (] [ml{x0)},
52 + Siy + ‘uiz

®

where i is the index for the ith row of the
diagonal matrix. Now we observe that

1 1 T

i I S T . 1 )
f¢] [sz, sy ¢ “’iz] {e)* = Z sz's“i vl 1 C
(9)
where {;}; is a2 column matrix formed from the

1th column of the [¢4] matrix or the ith mode of
the dynamic system. Hence, Eq. (8) becomes

(x(s)* = ) (e, F
%(s) Z|: ¢, (8}, (s“s'ﬂ“ﬁ’ {Fs))
s + :
+ = - 5 [m] {x(0)}
s” + s“’i + wy
1 .
o s o7 [m](x(O))) : (10)

Taking the inverse Laplace transform of
Eq. (10) and differentiating the resulting func-
tion, we obtain the displacement, velocity, and
acceleration matrices of the linear dynamic
gystem as follows:

t e (t-r)
e

x(ty) = Y M}i(d:):{

—
Y wi\/l = Ci

x sin (:ui(t-7) Vi- Z,i!) {F(r)} dr

+ [m){x¢0) e‘{iw"t [cos (“’it V1 - {iz)

L

71
+ -_!:f sin ("’it V1 - {,;2):‘
vi- 1

«liwit
+ [m] {x(0)} € —sin {"it‘“'ciz}'

72
w vl -4y

(11)

t
(x(‘.)} - 2 {¢}l{¢}|T [J e‘Liwi(t-v)
i ¢

i wi(t- T)

x {F(7)} (cos 1-2.

- = o V1 - (',iz w0t - 7)>:| dr

J1 - 1.2

1

(12)
(Cont.)
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- iml{x(0)} = :

ﬁ sin I(wi( J1 - ;iz)

+ [m} {x(0)} e LR cos (,‘;i‘ 1- "aiz)

sin (.'i: 1- ',-,’)} . (12)

4

-l w.t
- ml{x(0yte "' [uizcos (wi(\/l - ;iz)

y

T (w;' n-i2 li’)" ¢ (m]{%(0))

1-¢2

]

-

=% 3%®p 0 “’i(z‘v-iz -1 (
x e —_—  — sin ni(\/l-l'i!)
l: V1 -3¢

- 2Li”i cos (u)i( 1- Z,iz)] . (13)

where “, - ;. 2.,

Equations (11), (12), and (13) represent the
displacement, velocity, and acceleration re-
sponses of the total system of finite elements
in terms of its normal modes. Considering, for
example, Eq. (13), one may interpret that the
elements in {x(t)} are obtainable from acceler-
ometer readings, those in {F(7)} are obtainable
from pressure measurements, the values of .,
arc obtainable from a vibration survey, and (¢},
are the unknown quantities needed to satisfy the
equation,

Also, it may be observed from Eq. (13) that
the acceleration signals consist only of compo-
nents of the damped {requencies ., y1 - 7 2. It

is then feasible that a narrow-band filter
(whether it is an electronic circuit or a digital
computer filter) may be used to separate the
components. The filtered acceleration compo-
nents are derived below and given in Eq. (19).

Filtered Signal - Consider the acceleration

column matrix, Eq. (13}, which can be written
as

Kot = Lo o, . (14)

where {y(t)}; is the column matrix represent-
ing the quantity inside the braces in Eq. (13).
For an undamped system where 7, =0,

1
(7(())i = {F(t)} -J' {F(1)} w, sin w(t-T1)dT
o

~ [m}{x(Oo)} wiz cos w;t
- ml{x’0)} w; sin w;t. (15)

Let the acceleration column matrix be de-
composed into its modal components,

) = L Axn); . (16)

which gives, from Eq. (14),
ZY); = e o, (17)
Writing Eq. (17) in detail gives

N o r
Xy #y; Yii
X2 $a; Vi

x Py Yii
ni) (Pni) 'ni)
(18)

where
n is the number of degrees of freedom,
i denotes the jth mass, and
i denotes the ith mode.

From Eq. (18),

X (6) = @5 Z Bei Vi () (19)
k=1
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which is the filtered acceleration respcnse at
station j (filter set at the :th frequency).

Prior to the transient response experiment,
a vibration survey (frequency response experi-
ment) is made to determine accurately the natu-
ral frequencies (actually the daraped frequen-
cies) of the system. The applied forces {F(t)}
are measured during the transient response
experiment. (It is assumed that the applied
forces at each mass point representing the ex-
ternal structure are measured or can be extrap-
olated.) Then the quantities y, ,(t) can be de-
termined from {F(t)} and the initial conditions
of the system. Hence, on examining Eqs. (15)
and (19), it would appear that a set of {¢}, could
be determined if the values of x;;(t) and y, ;(t)
are computed for a sufficient number of instants
of observation.

In general, however, Eq. (19) will not be
satisfied exactly for all instants of observation,
due to inaccuracies in the formulation of the
mathematical dynamic model. Consequently, a
least squares criterion was generated for the
determination of the best {)}, that would satisfy
Eq. (19).

For the ith mode, this least squares cri-
terion may be written

iy P00 b03)

2

i -, s, >
. ii “3i Lo ki ki
Ly L

™

i= k=1

2|
||

- minimum (20)
or
- = maximum ,
where
k=1,2,...,n;
i=12,...,m, number of responses meas-
ured; and
t =1,2,...,p, number of instants of ob-
servation.

It should be pointed out that the number of re-
sponses measured, m, can be le3s than n, the
number of degrees of freedom.

Recapitulating, we have shown that, on the
basis of a dynamic analysis, an estimate of the
natural mode shapes {5} could be made. To-
gether with this information and the naiural
frequencies ..; obtained from a ground vibration
survey of the structure and the measured

response at various locations un the structure,
we are able to coastruct ,;; . This function ex-
presses in a general way the difference between
tite computed and measured responses. Hence,
minimizing this function wilt result in a set of
mode shapes that will fit the experimental data.

The minimization of Eq. (20) wag accom-
plished by means of a method developed by
Brooks [2]. This method is described in the

following paragraphs.

Brooks' Monte Carlo Method for Finding a
Maximum - A customary method for determin-
ing maxima is the gradiert method, which re-
quires determining the direction of maximum
change of the function by evaluating its partial
derivatives with respect to its independent
variables. One then proceeds along the direc-
tion of the gradienft until a local maximum is
determined. At this point, another gradient
direction is established.

Because of the amount of computation in
derivative determina‘ion, a more efficient
method is to maximize along a line in a random
direction. One can show that the expectation of
tke change is in the gradient direction, yet the
partial derivatives associated with the gradient
need not be determined.

To simplify the discussion of the method,
we consider ¥, to be a functioa of a two-
dimensional space (¢,;,¢,;) (Fig. 1). Starting
with an initial guess of ¢,, by which corre-
sponds to the point 0 in the space, one evaluates
-y; . From 0, a random direction is chosen. A
point 1 in the vicinity of 0 in the chosen direc-
tion is then selected and the corresponding value
of -y; is evaluated. The second value of -y, is
compared with the first. I the second value is
higher, select point 2 in the direction of 0-1 at
twice the step size. H point 2 is still higher,
select point 4 at again twice the step size. K
point 2 is still higher, select point 3 at again
twice tr.e second step size. H point 3 gives a

Fig. 1. Monte Carlo method




lower value of -, than point 2, a parabolic
curve is drawn through points i, 2, and 3.
Point 0" corresponds to the highes. point on the
parabolic curve, which should be clise to the
position of a local maximum in that Gae direc-
tion. From @', another random direction is
chosen and the process is repeated. The proc-
ess terminates when an exhaustive seaichof a
vicinity yields no better -y, .

It may be seen that this method has some
of the characteristics of the method of steepest
descent, but seems to be more efficient in that
the gradients in n-dimensional space need not
be evaluated for each step.

EXAMPLE PROBLEMS AND
DISCUSSION

Two problems were solved to illustrate the
method of this report. Both of these problems
considered a lumped parameter model having
only six degrees of freedom, but it is felt that
the essence of the method was deinonstrated
nevertheless. In the absence of test data, the
mass and stiffness parameters in the problems
were arbitrarily changed in an attempt to intro-
duce errors due to shortcomings of the dynamic
analyst who formulated the problems. The mode
shapes computed from this erroneous formula-
tion were obviously different from the true mode
shapes one would obtain from an experimental
modal survey if this could be accomplished
accurately.

In the first problem, it was assumed that
there was measured disturbance or response
information at all points corresponding to the
degrees of freedom ¢. the mathematical model.
In the second problem, this was not true. In
fact, no information was available at two of the
stations used in the mathematical formulation.

The convergence to the true mode shapes
was excellent in the first example despite the
fact that the analytically derived mode shapes
differed considerably from the true ones. In

— = 12,000 IN.,/SEC

|

k lvz

the second example, improvement in the com-
puted mode shapes was shown as a result of
processing the "experimental data'’ according
to the method of this report, aithough the im-
provement was not as dramatic as in the first
example. These results seem to imply that one
caa anticipate considerable improvement in a
poorly formulated mathematical dynamic model
when a large amount of experimental data are
available.

Example Problem Number 1

Statement of Problem - To illustrate the
application of the previously derived results,
an example was constructed that contains the
main featirres of a typical problem. The prob-
lem might represent the case in which it is de-
sired to determine the transient response of a
reentry vehicle subjecied {0 a blast loading.
Based on the physical properties of the struc-
ture, a spring-mass analog was constructed,
consisting of 6 masses and 5 springs (Fig. 2).
The applied force is represented by a triangu-
lar pulse with a peak of 1000 1b and a duration
of 0.001 sec that travels over the reentry vehi-
cle at 2 speed of 12,000 ips.

Let the true (actual) masses and springs
be of the following values:

w, = m,g = 28.309 Ib
w, = mpg = 19.709 b
w, - my, = 16.110 1b
w, - myg = 14.919 Ib
ws - meg = 19.319 Ib
we - meg = 19.427 1b

k, = 1.251 x 10 1b/in.

k, = i.528 x 104 Ib/in.

k3 H‘ \ls

SEC

"'i 0,0001.';m f“zw m Y LA
P S A A

KA d WA
6

s

Fig. 2. Spring-mass system subjected
to traveling pulse
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ky = 1.063 x 104 Ib/in.

= 4
L, = 1.144 x 10* Ib/in. T Pp———
ke = 1.012 x 104 Ib/in.

Let the dynamicist who formulates the dy-
namic model calculate these values to be

; v = 25.000 Ib v = 7.5677902x 10°
v, = 19.709 1b

| wy, = 16.110 Ib and
%, = 17.000 b
v, = 19319 Ib wg = 1.2522949x 106
v, = 19.4271b

k, = 1.25 x 10* Ib/in.

k, = 1.300 x 10* Ib/in.

it =

(J»)s =

{thg =

4 s A7)
1.4134544
-2.3715559
-1.8505419
1.2303420
2.2175386
1.7438144 |

A

"
)
0.5546950 |
-1.8057222
0.8981284
3.0055750

-2.7191541
_ 0.9841980 |

AL

(" 0.3159087 )

-2.0028400
4.4781486

-2.0715276
0.6050650

AL

-

v

hd

-0.1 157667 )

b. Calculated Frequencies and Mode Shapes -
Tiae calculated frequencies and mode shapes are

x, = 0.800 x 10* Ib/in. gﬁf;s?: masses and springs estimated by
k, = 1.144 x 10* 1b/in. ‘1.0 3
ks = 1.012 x 10* Ib/in. 1'8
2=0 W>):=< 1-0 >,
which are differerit from the true values; i.e., 1' 0
some errors wer2 made in formulating the 1' 0
values due to limitations of the theory employed. Lt J
An eigenvalue analysis would furnish the (2.2822298)
following frequencies and mode shapes. 1.6491218
o 2 - . 594196 1 4 4 = 0-6928123
a. True Frequencies and Mode Shapes - The 2 =93 2 g = 4 -0.8125969 <
true frequencies and mode shapes are based on -1.8292985
actual masses and springs of the system. &-2.4938566/
(1.0 ) (1.7012653 )
1.0 J -0.4846835
w?=0 1.0 7 _ 5 -2.1157792
! Y}, = wy = 2.4823731x 10 {p}, =
(rigid body mode) =910 < 3 X * = N-2.7167839
1.0 -0.5938498
_ 1.0 ) _ 2-5348854
(2.1832192) (1.8014632)
1.4587241 -2.3457125
27 =5.6617794x 104 v~ J 0.5896454 +2 = 4.4476042x 105 = J-2.2398130
(lzst flexible mode) 0ty -0.7540531 ? ’ ¢ ) * Wi ﬁ 1.2419185 <
-1.8584049 1.8550571
-2.5865483 ) (-1.5313187
(1.7488900 ) 0.6474993)
-0.88663317 -1.7204015
Wl = 5 4 = J-2.2827900 w? = 105 5 = J 0.7739617
J =2.5711003x 10 {0}, <-2.6291799 s 2 = 7.0651811x 10 {phg = < 95497223 [’
-0.6677005 -2.9868394

| 2.3984586

i B

_ 1.1885990 |




and
0.4804274
-2.1742601
4.3856738
"62 = 1.0675415x 10°¢ {1)6 = -1.7835363
0.6914416

-0.1605030)

It should be ncted that the true and calcu-
lated values of the frequencies and mode shapes
are different and that, after a hypothetical fre-
quency survey has been performed, the set of
true .’ in case a is found. The sets of {/}; in

case a are not known, however, whereas those

in case b hiave been calculated by the dynamicist.

It is assumed that, during the frequency survey,
either the mode shapes were not measured or
they were not obtained with the same accuracy
as the measured fiequencies. A computer pro-
gram hes been written to compute the quantities
x;;(t) and ,; (1) using Eqs. (14) and (15). The
values of the quantities for 3 time instants and
the 5 fiexible modes are given in Table 1.

Example Problem Results - The numerical
values from Table 1 were entered as inputs to
the "Creeping Random Computer Program,"
previously discussed, which minimizes ¢; in
Eq. (20). This computer program requires as
input an initial trial value for ... Instead of
using the calculated values of ¢,; only (the re-
sults of the dynamic analysis), two cases of ini-
tial trial values of ;; were attempted: (a) the
calculated values of <, (from the dynamic
analysis), and {b) all elements of ¢ ;i equal to
1.0.

a. Calculated /;; as Initial Values
(o) = o) {0}, {gh)

[ 2.1832193

1.7489067  1.4134545
1.4587253 -0.88650611 -2.3715565
_ | 0.58964542 -2.2828123 -1.6505421
~ 1-0.75405318 -2.6292058  1.2903421
-1.8584052 -0.6677963 2.2175393
| -2.5865485  2.3984812 -1.7438146
No. of (71,001) (245,000) (81,002)
Trials
0.55469529 0.32092342
-1.9057233 -2.0454205
0.89812871 4.5181893
3.0055761 -2.0922921
-2.7191556  0.59756558
0.98419836 -0.11567424
No. of (139,002) (285,000 not
Trials yet converged)

b. All Elements of ¢ Equal to 1.0 as
Initial Values

1

i¢l = o) {8} 3} 4i¢h,)

-2.1832198 -1.7464479 -1.4134545

-1.4587201 0.90395607 2.3715562

- |-0.58864556 2.2796787 1.8505420

0.75405333 2.6254416 -1.2903421

1.8584022 0.65576761 -2.2175390

_2.5865490 -2.3956199 1.7438145

No. of (108,002) (186,002) (152,001)
Trials

0.55469514

-1.8057231

0.89812867

3.0055761

-2.7191556

0.9841983514

No. of (177,002)
Trials

Discussion of Example Problem Number 1
Results - Comparing the results obtained with
the true mode shapes, it may be observed that
the computer results are accurate and repeat-
able as they converge to the values known to be
correct a priori.

It is interesting to note that ¢,, converges
to the same numerical value, but with 2 minus
sign for i = 2, 3, and 4 in the case of the initial
values of 1.0. For i =5, the obtained result is
the same for cases a and b. For our physical
problem, the mode shape - {¢}, is the same as
the mode shape {¢};.

Not every set of ¢;; which minimizes Eq.
(20) is necessarily a modal vector. If only a
few response measurements are made and if
there are many more unknowns than are repre-
sented in Eq. (20), more than one set of ¢,; will
render y; equal or close to zero. An addftional
mathematical constraint is required to produce
an acceptable solution. This restraint is sup-
plied by confining in some manner the mode
shape {¢}; tu a neightorhood of the theoretically
calculated mode shape.

If the [m] matrix is chosen somewhat arbi-
trarily, as is often the case in the original
model formulation, a test to evaivate whether
the correct set of {¢}; is obtained is that the
vectors should be orthogonal with respect to the
fm] matrix. After the correct [¢) matrix,

[¢] = [{s};i¢},...{¢},], is obtained from the
Monte Carlo computation, the correct mass and
stiffness matrices can then be evaluated from
the following equations:
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m = (7)) ()
and (21)
m = (i$)T) ' [w2]lgl-t.

H

Example Problem Number 2

Statement of Problem - Referring to Ex-
ample No. 1 and Eq. (20), we note thai {f neither
a forcing function measurement nor a transient
response measurement is made on any node in
the dynamic model, then the modal value at that
node does not appear in the equation. Hence,
its value can then be arbitrary. In this example
problem, we shall investigate methods for over-
coming this deficiency.

When a dynamicist first formulates a math-
ematical model, the choice of nodes is perfectly
arbitrary and is subject solely to his judgment.
To a lesser degree, the assignment of the
masses at the nodes is also arbitrary. For
most dynamic analyses, knowing the correct
frequencies and mode shapes should be suffi-
cient to describe the system analytically. In
this example we shall assume that the correct
mass matrix is formulated; hence, the mass
matrix is not going to be changed in the im-
provement of the model.

The same transient loading as that in the
previous example is used except that the travel-
ing pulse hits the first two particles only. The
acceleration measurements are made on parti-
cles 1, 3, and 6. No experimental data are
available for particles 4 and 5. This may cor-
respond to the case in which there are internal
components 3, 4, 5 and 6, and 1 and 2 represent
the external structure of a vehicle subjected to
a blast loading. Compared with the 6 .orce
measurements and 4 acceleration measure-
ments of example 1, this example presents a
more restrictive requirement.

It is noted here that the orthogonality prop-
erties of the modal matrix normalized with re-
spect to the mass matrix might be used as a
supplemental restraint in addition to the com-
parison of analytical results with experimental
data. The following equation is chosen for mini-
mization in the Monte Carlo method:

9”2(‘1’]2-d’22q ..

-
m

N Z ‘?:. <§52"”j2 Zd’ k2 7k2>
k=1

t=1 |j=1 \ t

 $n2)

2

2
n ]

- 2 &
‘o, tL Wop Bpg - 386.08401J = minimum, (22)

f=1

11

for i { 2, the first flexible mode,

- ’
P L] qQ
VildgjeceePpy) = Z Z(’?ii"”ii Z 4’“7&;)
t=1 szl k=1 t
- 2
vy |Y wy g, - 386.08401
[0=1
F 2
tc, Z'Hd’li‘t'!!] = minimum,
[ £=1
(23)
where

k = 1,2,... q, number of forces
measured;

wgy = diagonal clement of weight matrix
("'correct' set);

i =12,...,m number of accelera-
tions measured;
¢;.c, = weighting constants; and
t = 1,2,..., p, number of instants of
observation.

Table 2 constitutes the input data to the
"Creeping Random Computer Program' for the
improvement of the first three flexible modes.
For initial trial values of the ¢'s, the calculated
values mentioned previously are used. Values
of 1.0 are taken for the constants c, and ¢,,
giving equal weights to the experimental data
and conditions of orthogonality.

Example Problem Results - Results from
the computer program are given in Table 3.
The true values of ¢'s are repeated for com-
parison in the same table.

Discussion of Example Problem No. 2
Results - The results show that improvement of
the modal values, at nodes where there are no
experimental data, can be obtained by the use of
the orthogonality properties of modes.

The orthogonality property introduces one
additional equation (in the case of {¢#},) to
equations containing experimental data when
there are n unknown ¢'s to be found. The value
of n can be much larger than m. The question
remains whether the orthogonality equation can
improve all the ¢'s in a somewhat uniform
manner.

To investigate this question, a value of 10°
is taken for ¢, in Eq. (22), thus magnifying the




TABLE 2
Creeping Random Computer Program Input Data
Flex- t, = 0.0028 t, = 0.0032 t, = 0.004
ible
Mode }! S8hear Strain | Acceleration | Shear Strain | Acceleration | Shear Strain | Acceleration
18t |12 -65.00842|x,,|-477.84119|y,,] -74.16420|x,,| -552.93978]y,,| -90.38496 |x,, -687.48634
(i =2)|22 -52.74640 |x,, | -129.05569}y,,| -62.62416{x,| -149.33837}7,,| -80.59479]x,, -185.67680
xg,| 566.11783 Xg2| 655.09017 Xg; 814.49204
ond |713]-237.7336 |x,,|-402.66076y,,|-249.6289 |x,,|-401.89947}y,, -242 6493 |x,, -351.65368
(i=3)]= -209.2545 |x,,| 525.58478(vy,;|-233.2089 |x,,i 524.59108}y,,|-251.8453 |x,, 459.00629
xg3 | -552.21607 X¢3| -551.17202 Xe; -482.26407
3rd  [714]-333.1873 ix,,| 415.55418}v,,|-314.4325 |x,,| 491.64481}»,,|-211.4668 |x,, 533.72985
(i =4)|72 -322.5316 |x,,|-544.05747],,|-334.0710 |x,,| -643.67788,,|-285.2581 |x,, -698.77702
Xgq | -512.A7969 Xge| -606.55462 xs, -658.47600
TABLE 3
Comparison of Computed and True ¢'s for Example 2
b by ¢4
Computed True Computed True Computed True
2,1823435 2.1832192 1.7488908 1.7488900 1.4134613 1.4134544
1.4613510 1.4587241 -0.88663371 | -0.88663372 | -2.3715563 | -2.3715559
0.58940554 0.58964540 | -2.2827910 -2.2827900 -1.8505515 | -1.8505419
-0.76325231 | -0.75405312 | -2.6339910 -2.6291799 1.3480425 1.29803420
-1.8548189 -1.8584049 -0.65287925 | -0.66770054 2.1903482 2.2175386
-2.5855092 -2.5865483 2.3984598 2,3984586 -1.7438244 | -1.7438144
294,002 trials.
b170,002 trials.
€106,001 trials.
effects of orthogonality in comparison to those MIXED RESPONSE DATA FROM STRAIN
of the experimental data. GAGES AND ACCELEROMETERS-—-AN
EXTENSION OF THE METHOD
Table 4 shows the results of computed {¢},
compared with the starting values and the true In the preceding examples it was implied
values. A general iraprovement of {¢}, is that only acceleration measureinents were
noted. made. In practice, however, both acceleration
TABLE 4
Effects of Orthogonality Equation (C, = 10°)
Calculated {¢},2 | Computed {¢},> | True {4},
2.2822298 2.1391473 2.1832192
1.6491218 1.5925472 1.4587241
0.69281230 0.57770646 0.58964540
-0.81259693 -0.81575419 -0.75405312
-1.8292985 -1.8758526 -1.8584049
-2.4938566 -2.5343082 -2.5865483

a
b

Starting values.
From random program,
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and strain measurements are used. In formu-
lating the dynamic m« Jel, we postulate that the
dynamicist uses a finite v ement approach of
some kind where masges are concentrated at a
network of stations cailed nodes. The displace-
ment and acceleration regponses are also
measured at thc nodes. K the strains of the
structure between the nodes are measured by
strain gages, these measurements can be re-
lated to the relative displacements of the two
nodes. The exact nature of this relationship
would have been determined by the dynamicist
in his original stress analysis.

Before proceeding with the development of
the method for hardling strain data, we will di-
gressbriefly to derive some strain-displacement
relationships that will be needed in the subse-
quent derivation.

Let the transformation matrix (T] relate
the strains {¢} and the displacements {x} of the
system. The matrix (T] is called the '"strain
transformation' matrix. This relationship may
be expressec as follows:

{e} = (T)x}. (24)

As an illustration of the form of (T], two ex-
amples are shown. Example 1 is the case of an

axially loaded bar of varying cross section (Fig.

3). For this case, Fz. (24) takes the form:

tq [1/{, | VZA% ) [x,
- x, > . (25)
€ [0 “1/4, | /4, L,

Fig. 3. Example 1,
longitudinal bar of
varying cross section

1
!
~
»
~ ~~
o
x

The second example (Fig. 4) is slightly
more complex and considers the case of a tri-
angular membrane element subjected to in-
plane forces. The strain-displacement rela-
tionship is expressed by Eq. (26):
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Fig. 4. Example 2,
triangular membrane
element

v,
s
Yxy X32 Ya3 X:3 Y31 ¥21 Y12
v
- B BEANE)
(26)
where
@ o Bep gy & strains in x- and y -directions

and shear strain, respectively,
considered to be uniform in
small triangular element;

A = area of triangle;
Va3 = ¥; ~V3, €tc., where x and y are
coordinates from reference

point; and

u,v = displacements in the x- and y-
directions, respectively.

Now, proceeding in a manner analogous to
the treatment of acceleration data, we have
from Eq. (11), the filtered signal for the dis-
placement,

(x(t)}; = (&), {e) B0, . (27)

where {5(t)}, are the terms included in the
braces in Eq. (11).

Substituting Eq. (24) into Eq. {27) gives

fey; = Mo} (3, (28)

which, when written out in expanded form, be-
comes




——

(€4;) LITRIT Tinl
€2i
i = (T T2 Ttn
. r ) Trl Trl Trn_‘
(t,,\ fﬁ“\
¢2| ﬁ'."i
s > (81,05 - Sl X - P
(Fni) (Fai)
(29)
where ¢,; is the strain measurement {iltered

to the ith mode between nodes { and £+ 1, and
there are r strain measurements.

It follows that ¢, is given by

(Z Ty, ¢ \)(Z b ﬁk,>. (30)

Hence, the ¢, function to be minimized for
mixed measurements of strain and acceleration
responses will be given by

$i( Py baie- - ®ni)

fofgree) )]

(31)

where there are m acceleration and r strain
measurements, m+r < n and o = scale factor,
which is introduced because the strains, nu-
merically, are so much smaller than the
accelerations.

Similarly, one can gather together the ex-
perimental data of more than one transient
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response experiment to form the ¢ function to
be minimized. The subsequent dy aamic model
obtained from a single computing operation will
best fit all the experimental data 8o treated.

CONCLUSIONS

This report demonstrates that it is feasi-
ble to improve an analytically derived linear
structural-dynamic model based on transient
responge experiments. Although the? data used
in this report were "manufactured' from anal-
yses and were not actuai mcasured data, the
basic concept has been demonstrated.

In the examples presented, attempts were
made to represent typical transient response
experiments, aibeit on a smaller scale; i.e.,
only a six-degree-of-freedom model was used
although it is recognized that most practical
problems in the aerospace industry require
many more degrees of freedom for adequate
simulation. In addition, the essence of the
transient response cxperiments was maintained,
especially in the second example, where the
forcing function was assumed to be applied at
only tihe first two particles and acceleration
measurements were made on particles 1, 3, and
6. This example typifies the experiment in
which the external structure, represented by
particles 1 and 2, is subjected to a load, and
response measurements are made on the exter-
nal structure and on some, but not all, of the
internal components. (No measurements were
made on particles 4 and 5.)

The basic logic of the method has been es-
tablished, even though feasibility was demon-
strated only on a six-degree-of-freedom system
with input data (loading and response) known
exactly. A study of the effect of errors in data
should form a next step in the evolution of the
method.

FUTURE EFFORT

Although this report, in its pr-esent form,
can be utilized for assessing the validity of a
structural dynamic analysis based on experi-
mental results, certain questions have arisen
during the course of this study ihat require ad-
ditional effort to find the answers. In an effort
to demonstrate the principles of the method in-
volved, relatively simple examples were chosen
in the report. To obtain a better simulation of
the physical system, more complex analytical
dynamic maodels involving more than six degrees
of freedom are often generated. It is planned
to demonstrate that the methods of this report
are feasible and economical (in terms of




computer time) in handling systems represented
by many degrees of freedom.

In the simple examples given, it was as-
sumed that four, and then three, accelerometer
measurements were mnade during the tests. An
investigation is planned in which it is hoped that
general criteria for the anumber and location of
transducers required for successful application
of this method can be achieved. These criteria
will then serve as a guide for future planning
of experiments.

Measurement inaccuracies due to trans-
ducers and associated circuitry always arise
due to factors such as manufacturing tolerances
or noise in the system. R is planned to employ
statistical concepts in the representation of the
loading an” response measurements gbtained
from experiments. This study should result in
a "best fit" solution to the dynamic model based
on test data. In addition, it is hoped to formu-
late a criterion for measurement accuracy to
yield adequate results for revision of the ana-
lytical model.
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DIGITAL ANALYSIS OF FATIGUE DAMAGE TO A MULTI-
MODAL SYSTEM SUBJECTED TO LOGARITHMICALLY
SWEPT SINUSOIDAL VIBRATION SPECTIRA

Seymour Fogelson
The Marquardt Corporation
Van Nays, California

To qualify a component for use in missiles of space vehicles, it is nor-
mally required that its fatigue strength be demonstrated by test. Such
a test generally requires that the component be subjected to a random
vibration input for a specified time a.d to a sinusoidal vibration spec-
trum that is swept linearly or logarithmically at a given rate. One of
the functions of the stress analyst is thus to verify that the component
has a fatigue life sufficient to pass these tests without failure. The
purpose of this paper is to present the analyst with a digital computer
program that will predict the fatigue damage done to a structure with
up to six degrees of freedom that is subject to logarithmically swept
sinusoidal vibration spectra.

A method for calculating the fatigue damage of structures subjected to
sinusoidal vibration spectra that are swept logarithmically at a given
rate was developed anc programmed for analysis by digital computer.
It is assumed that the structure is a damped spring-mass system with
each mass having three translational and three rotational aegrees of
freedom. Only lumped mass structures are considered. It 1s further
assumed that the resonant amplification factors and the overail damp-
ing ratic of the structure are known.

Based on this analysis, the resulting digital computer program yields
the damage accumulated in each mode of respunse for each axis of ap-
plied excitation, the total damage accruing for each input axis, and the

total damage caused by sweeping the spectrum a given number of times.

5. Fogelson

INTRODUCTION

When a damped resonator is subjected to a
sinusoidal excitation of a given amplitude and
frequency, its response peak acceleration and
frequency is constant with time. The stresses
induced in the structure, which are functions of
the response accelerations, and the number of
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times these stresses are repeated are there-
fore readily determined.

The "'allowable' number of times this in-
duced stress may be repeated is obtained from
the S-N curve of the material and the resulting
damage to the structure is directly obtained.

When a number of sinusoids differing in
both amplitude and frequency are applied to the
structure in sequence, the resulting damage is
the sum of the damage caused by each resulting
stress level, i.e.,

D-Z% (1)

according to the Palmgren-Miner hypothesis of
cumulative damage.

’




-

It is often required to determine the dam- such as that shown in Fig. 1 is logarithmically

age done to a structere when a frequency range swept at a given rate. This paper describes

is swept at a given rate. Within this range the the utilization of that equation, and the resulting
magnitude of the applied excitatior may remain digital computer program, for predicting the
constant for all frequencies or only over speci- fatigue damage in a lumped mass system having
fied frequency ranges, as shown .n Fig. 1. six degrees of freedom.

When this range of frequencies is swept, the

responsec accelerations and, therefore, stresses

are now time dependent and Eq. (1) is no longer LIST OF SYMBOLS
applicable. In short-lived structures, sucn as

missiles and epace vehicies, the rate of sweep b Slope of material S-N curve

is adjusted to provide equal time increments

for each frequency band [1, p. 24-22]. In this D Damage

type of sweep the frequency varies logarithmi-

cally with time as shown in Fig. 2. An Numbez of applied cycles occurring be-

tween two specified stress levels

f Frequency of applied acceleration (cps)

e
f, Natural frequency, simple resonator (cps)
f, Natural frequency in mode r, multi-
modal system (cps)
e F.T Force, torque (Ib, in.-ib)
» Damping ratio
H Linear or generalized magnification factor
HCPS) I Weight moment of inertia (psi)
Fig. 1. Input spectrum K Percentage of maximum magnification
factor
The response of a damped resonator sub- m Mass
jected to a legarithmic swept sinusoidal spec-
trum was investigated by Grumman Aircraft M Generalized weight (1b)
Engineering Corp. [2]. This investigation re-
sulted in an equation for predicting the number i Response acceleration (in./sec?)
of times a specific amplification factor and,
therefore, stress is exceeded when a spectrum n Number of applied cycles i

10 T

10
LOG f (CPS)

10

It N .
0 50 100 150 200
USEC)

Fig. 2. Frequency-time relationship
for logarithmic sweep
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N Number of allowable cycles from material
S-N curve

Q Generalized force (lb, in.-1b), "quality"
factor = 1'2,, single-degree-of-freedom
system

R Applied load factor (g)

S Stress (psi)

SR Sweep rate (octaves/min)

T Sweep period (sec/octave)

¥ Weight (lb)

x Applied acceleration (in./sec?)

¢ Torsional mode magnification farctor

Subscripts
i General index, response coordinate
j Input coordinate
k General index
L Subincremental index

r Mode

Matrix Notation
[A]T Transpose of matrix A

[ ] Diagonal matrix

FAILURE CRITERIA

A typical material S-N curve is shown in
Fig. 3. If a stress of intensity S, is cyclically
applied n, times, the resulting damage is

D, (2)
1
and the fatigue margin of safety may be ex-
pressed as
I
MS. - - 1. (3)

If the peak stress intensities vary during the
life of the structure, the damage, according to
the Miner hypothesis, is cumulative and is ex-
pressed as
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Fig. 3. Typical material S-N curve

b Yok

i=1 !

(4)

where m is the total number of different stress
intensities applied to the structure. In a piece-
wise fashion the S-N curve shown in Fig. 3 may
be expressed as

N.

N, (S,/Sp°°. (5)

where

log (N,/N,)

™7 Ter (5,5

(6)

By substituting Eq.
is expressed as

o SRR

(5) into Eq. (4), the damage

(7)

Equation (7) demonstrates that, for a given ma-
terial, the damage depends on the magnitude of
the applied stress s, and the number of times
n; that it is applied. According to test data

[1, p. 24-12), failure of a multiple-loaded mate-
rial occurs when

D>1/2.

(8)

=Xt

1SS/ I

P

|

C
1
u
YAAYA
K

Fig. 4. Stress-time history




For clarity, the calculation processes for de-
termining S; and n, will be illustrated for a
single-degree-of-freedom system.

SINGLE-DEGREE-OF-FREEDOM
SYSTEM
Determination of Stress

A resonator, such as shown in Fig. 4, re-
sponds to an excitation with the acceleration of

v, =

Hx . (9)

where H, the magnification factor, is given by

H - {00 (607 + &2 (g f,,)’}| © (0
X(t) = X, sin o, (11)

and u; = response acceleration. When
f,= f,. (12)

Eq. (10) reduces to

When f; ¢ £, the magnification factor can be
expressed as

H; - K;0, (13)
where K, is some fraction less than unity. The

stress on section A-A (Fig. 4) of the mass is
given by
 ma- Al

(14)
Axa

where

ms_a 1S the mass to the right of section
A-A, and

A,_p is the cross-sectional area at A-A.

Substitution of Eqs. (9) and (13) into Eq. (14),
setting my o, W, . g, yields

s, ARk X (15)

Aa.a g
or

S;  S,K,ON,

(16)

where S is the stress due to a 1-g loading and
N is the applied load factor. If
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S... - S,ON,

nax (17)
the stress at any nonresonant condition can be
expressed as

i i “max -’ (18)

Determination of Applied Cycles

The number of times the stress s; (Ej.
(18)) is equaled or exceeded was found by
Grumman [1, p. 24-22] to be

n; - 2.041Tf, /1 Jae A kel .
(19)

in which T is the sweep period in seconds per
octave.

Since n; counts all of the peak stresses
greater than s, it also includes the number of
times the stress S, is exceeded (where S, > Si),
as iliustrated in Fig. 5.

Fig. 5. Simple resonator

To preclude counting s, and all higher
values of S more than once, the increment be-
tween n; and n, is used and the number of
times the peak stress level is between s; and
S, is counted. Thus, the quantity

(20)

n; n; = ng

is used in Eq. (7) in lieu of n;,. The stress
magnitude now used in Eq. (7) is the average of
S, and S, i.e.,

§_l

=k (21)

(Si+sk)'

If K, - X, is small enough, the resulting error
will also be smail. Since the greatest damage
is done at the higher stress levels, this differ-
ence should be initially small, e.g., 2.5 percent,
increased to 10 percent for K = 0.6.




FETERMINE| |DETERMINE
L] ot As;
(EQ. 19) (EQ. )

DETERMINE

INPUT DATA] |INPUT DATA DEFINE D, DETE ¢ DETERMNE
=1 S MAX, Q,N [~ VALUES OFf—-» = D*=1D; =] TOTAL DAMAGE

Ny, $y. b v PER SWEEP

1+ N o . D=D*x NS
t, 7. N8 K, (€Q. & PER SWEEP x
*NS = NO. OF SWEEPS

|

DETERMINE
5
(€Q.17)

(1) IF SN DIAGRAM IS NOT A STRAIGHT
LINE WHEN PLOTTED ON LOG-LOG
PAPER, THEN ASSUME STRAIGHT LINES
BETWEEN AVAILABLE DATA POINTS
AND USE SEVERAL VALVES OF NS, &6.

Fig. 6. Flow diagram for single-degree-of-freedom system

The procedure to be used to determine the
damage factor D for a single-degree-of-freedom
system is outlined in Fig. 6, and will now be
adapted to a multi-modal system.

MULTI-MODAL SYSTEM

Discussion

This analysis is limited to a lumped mass
system, supported on lightly damped springs,
with each mass having three translational and
three rotational inodes of vibration. This sys-
tem may be typified by equipment supported at
various points on a space framework with struc-
tural damgping. A sinusoidal excitation, such as
shown in Fig. 1, is logarithmically swept and
applied to the system along each of the three
orthogonal system axes in succession. This
input excites all six modal responses as the
frequercy range of the spectrum is swept, as
shown in Fig. 7.

As in the simple resonator, the procedure
to be followed is (a) determine the applied
stress intensity; (b) determine the number of
times each stress intensity is applied; (c) de-
termine, {rom the S-N curve, the number of
times each stress intensity inay be appiied; and
(d) coinpute the damage.

In a weakly coupled system, the damage
from each mode must be computed separately
and then summed. Each of the procedures out-
lined above will now be discussed in detai'.
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Fig. 7. Response inertia
forces and moments

Determination of Stress Intensities

Each inertia load shown in Fig. 7 is de-
rived from the mass properties at its centroid,
the corresponding amplification factor, and the

applied excitation. These loads are expressed
as

rij rijor

and > . (22)

Let each load be indexed as

b




e

(o ) h
’rxj rQl'lj
Frvi Q, 2;
Frlj Qri
< > = < < Qri‘
J
Trxj Qr!j ?
Teys Qs;
\Tr:jJ \Qtoj)
where
r is the mode,
i is the response coordinate, and
i is the input coordinate (i = 1 on x-2xis,
j = 2 on y-axis, and j = 3 on z-axis),
Similarly, let
- . _ -
v M,
v M,
w MJ
= = M] .
Iy M, [ !
Iy Mg
. IZ.. L Mo
Hixi Hiyj Higy fuxg Ouyy Oy
H2xj H2yj Hsz 92xj 02yj 82:]
Hin H3Yj HJ!J‘ (‘)ij 03YJ 931]
Huj Hayj Huj (’u; 04” Buj
Hij HSyj HSzj Uij 05yj HSzj
L"oxi "oyj H6zj Ooxj ﬁoyj 06zj
Hn, lej Hloj
H2|j Hyéj
[Hfij] Al
_Holj Hooj
and

- —

Let the full force matrix be

(Q,:;) = [©y;;110,,,) - (@]

which, from Eq. (22) and the matrices defined

o] alla]

o]

At any point in the structure, the stress induced
by one of the Q_;, forces is

(23)

rij

Seij = QijAis (24)
where A, is the coefficient relating S,;, to
Q,;; as found by stress analysis. If Eq. (24) is
written as a matrix, with the columns corre-
sponding io the response axes and the rows
corresponding to the modes,

s~ ear ]I ]

and using Eq. (23), these stresses may be ex-

(25)

pressed as
90 1 8 9 N P
where
T
Seij ¢ [{Snj}{szn} {Sou}]
and
(e |
Srlj
Sr2j
S.5;Y = § - % :
hsron

For the nonresonant frequencies, as in Eq. (18),
Eq. (26) becomes
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Determination of Applied Cycles

It is shown by Eq. (19) that, for a simple
resonator, the number of times a stress of in-
tensity S, is exceeded is a function of the cor-
responding magnification factor kK,Q. Ina
multi-degree-of-freedom system, however, the
maximum magnification factor is H, which is
different from Q = 1/2y. Equation (19) is,
therefore, expressed as

122.46
s e /1-J[1+72] [1-(/KH ;O .
(28)
where
f_ = rth modal frequency, and
SR = sweep rate (octaves/min) = 60/T,

Equation (28) indicates that for a given mode
and sweep rate, the stress components S, ;;
will each be exceeded a different number of
times, depending on the magnitudes of the cor-
responding magnification factor (K H ;).
Consider a two-degree-of-freedom system
with response directions q, and q, and the
corresponding resonant amplification factors in
mode 1, H,, and H,,, for an input in direction
1, and assume that H,, > H,,. Equation (28)
indicates that as (K H, ;) diminishes, the num-
ber of times the stress corresponding to
(K, H_ ;) is exceeded increases. Thus

Mg € Nyggge

The number of times the peak stresses fall in
the intervals

Spir <8y < S(k+Ak)ll
and
Se12 < Sip < S(kﬁAk)lz
is given by
LT M k+ak)11
and
Mgz = Nyyp ” Nketk)r2”
Since
Neir < Mgz
and
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<
Moeakynn  M(keskyr2°

(29)
Angyy <00y, .

Since Eq. (29) must hold for all values of k,
it is inferred that, on a time basis, the stress
S, 12 is applied to the structure before the stress
S,1:- This means that the stress S, ,, is applied
to the structure a number of times equal to

- |
BBy yy = Bnyg gy = By, (30) i

more than S, ,,. Also, since S, ,, and S, ,, are
applied symmetrically about a central frequency,
Any,,/2 and Ang,,/2 must occur simultaneously.
The total stress

S = Seun * Sz

is thus applied to the structure a number of
times equal to

Abng,, = Bny g - (31)

This reasoning has been extended to cover the
six-degree-of-freedom problem under consid-
eration.

This concept is best illustrated in Fig. 8
where the &n; and S; values are chosen arbi-
trarily. In this figure, 4n;/2 is plotted against
S; to emphasize the temporal relationship be-
tween the various response directions.

it is seen from Fig. 8 that the initial stress
intensity applied to the structureis s ,, = §, =
5 ksi, which is applied (2) (300 - 200) (10%) =
200x 10 times. Since the total stress applied
to the structure is the sum of the component
stresses, the stress S, = S;+S, =5+ 10=
15 ksi is applied to the structure (2)(200 - 150)
(103) = 100x 103 times before S, is applied.
The summation of stress versus cycles contin-
ues until the maximum stress is reached. This
method is illustrated in Table 1 which lists the
total number of applied cycles for each Sy
value.

The stresses, S, ,, as found in Table 1,
are then used in Eq. (5‘ to determine the corre-
sponding allowable number of cycles, N, .

Allowable Cycles and Total Damage
In any interval of stress, where

S, <S8 <S5 a

it is assumed that S, may be used as the ref-
erence stress to determine the allowable number




AU YTl it a4 0

A

%A’.‘lo’ 1

S 20 25

30 S;(xsy
3 6 2 i

Fig. 8. Example relationship

between 4n,

and S;

TABIE 1
Total Stress vs Number of Applied Cycles2

Increment, L No. of Applied Cycles, &n, Tetal Stress, S , (ksi)
1 (2) (300 - 200) (10%) = 200x 103 5
2 (2) (200 - 150) (10%) = 100x 103 10+5 = 15
3 (2) (150 - 100) (103) = 100x 103 20+15 = 35
4 (2) (100 - 50) (10%) = 100x 103 15+25+35 = 175
5 (2) (50) (103%) = 100x 103 30+75 = 105
4See Fig, 7.

of cycles, as given in Eq. (5). By using the sub-
scripts k, r, and j as before, and introducing
the subscript L to denote the subincrements as
illustrated in Table 1, Eq. (5) is written as

b
1 l(serj> . (32)
Neeprj N\ S,

The total damage per spectrum per sweep is
then, from Eq. (7),

=1 r=1 k=1 L=1

where

m is the number of nonresonant stress in-
tensities,
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n is the number of subincrements result-
ing when the componert stresses are
summed, and

b is the slope of S-N curve (see Ey. (6)).

PROGRAMMING

The calculations indicated in this analysis
were programmed, in Fortran IV, for the IBM
7040 digital computer. A flow chart of the pro
gram is shown in Fig. 9. A listing of the main
program, with the subroutines SORT and SUM,
is given in Appendix A. A sample problem
based on the LEM Propuision System/Thrust
Chamber Assembly (PS/TCA) analysis [3] is
given in Appendix B.
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Fig. 9. (a) Fatigue program input-output flow chart, and {(b) computation of damage
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Appendix A
PROGRAM LISTING

1CC4-DU-0136 FURTRAN SCURCE LI1ST 09/726/66
SOULNCE STATEREAT

0 $IBFIC 3¢C2

NV W

13
30

-

(9
C
(4

[aNaNalal [aXaNalalal

(2N alal

[a X al

50
10C

11C
120

130

PRCGHAR ~FATIGUL ANALYS(S.G.A.E.C. PETHCOD
vATeD 19 APRIL.16¢6
ANALYSIS AND PRCunAP 8Y S.FCGELSCN

DIMENSIUN SSIS5e103eVVAIS 10D BBSNES.30) sNANE2( 4,103 ,MAT(10).,ABl 06,
2300 o MANEI & 10D ZZRI10I o XXNS(10) +XXR(6,10) !
DIMERSICN AJLDoNIO03)eFNIO)TITLELIS)(TITLEZ(4), TITLEIIS),

2 XRIO)oSOXIOe6)eSOYIO0) ¢SDZIO6)sALIIT) oSFOXIO41T7,6)9SLOY(6,17
300)oSFOZIG1Te0)oERXIIT¢046) +ENY (17464060 ENZITIT,6006) DELENXILT 6,6
S oDELENYI(To€eO) e LELENZITT 16,0)0AA10) ¢BLO)oCLO),SUNNXIG,1T,0),FSOX
SU174¢696)s SUPNY(6:17406) ¢ SUMKZIOIT o063 ¢FSOVIIT6e0)oFSUZI17,646),
OkOX(17¢60€3oROYI17:600)sROZTIT646)0ELDOXILIT . .DELOOY(17,0),
TOLLOOZ117:0) . SOMDX16) o SORDY(6)SOMDZ(6),0DMI6) o XXX (6D XMI6)
DIMEASICN SIS),VNIS) 4BSKLS)

VIBEASICON X(€) VIS) 100}

REAL NAPE2,MANED

REACIS,10CITITLEL ¢APS o ACSoNPATS

FORMAT(4A0,2X,313)

TITLEL=S ASSEMBLY MAME, NPS= NO. OF PARTS TC BE CHECKED, NCS=NO.
OF LCAU CCMUITIDNS, NPATS 1S THt NUMBER OF DIFFERENT MATERIALS IN
ThE ASSEPBLY

REAQIS12CHILINHIL 2 JeKDelx196)ol=106)9K=1,43)
FORMAT(6FO.3)

HEGedoKI=PAGANIFICATION FACTOR (N MCOE (,FOR A RESPONSE IN DIRECTI-
ON JoTO AN (APUT LCAD FACTOR 1IN OIRECTION K

REAQISo13CIIFNILD(=1,0)
FORMAT(6EL2.¢)

FNJ(IsNATURAL FRECLENCY (A MCOE 1
REAUD S (2000 XM3 3 40s1,40)

XM3Jhed=m1e3 = ASSEFBLY WEIGHY: XPIJ)eJ=4e6 =11X),0LV), ML)
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3402 2 HLCELSEN

(S»

4%
£5
(1]
1

1co
s

112

123
134

14¢
147
156
151
153
154
15%
1%¢
16C

[a XA N aNoNal

[a N o/ o] [aNaNalal

[aN aXal [aNaN ol

14«0

150

155

1¢¢

34C2 2 FCCELSCN

IsN

1¢l
163
les
165
167
17C
171
172
174
175
176
172
20C

2C3
2C4
2C5
2C7
<10
el
213
215
¢
ra %)

22¢
rd ]
c22

[a N aNal oS

[a N aX al

[a N a K ol o

165

167

17

18C

192
164

196

2¢C

1CC4~CO-0136 FCRTRAN SCURCE LIST 3402
SOUYRCE STATEMENTY

READESo13S5D1(SSINPIN=]5),P7] ,NNATS)
REAULS, 1353 LVYNIN,P) A=L;5),M3] (NNATS)
REAUIS)1ISILIBBSNIA M) oN=]1,5) oN=] ,NNATS)
FORMATIS5EL2.¢)

SSA 1S THE CROLINATE OF Tht PATERIAL S-N CURVE
YVA 1S THE ABSCLISSA OF TnE MATER(AL S-N CUVE
tBSN 1S THE SLCPE CF THE MATERIAL S-N CURVE

READIS 140 (NAPE2LL GNP I=]o%) s MATINP) (1P |, NPS)
FCRMAT(4A6,2X,13)

NAPL2 1S THE NAMc OF THE PART BEING ANALIZEO., PAT (S THE NATERIAL
COOE NUMBER

READISo130)C(ABIIINP) ¢J=L,6) NP1, APS)
ABLJIWNP) 1S THE STRESS INFLUENCE CCEFFICIENT FCR A RESPONSE IN
DIRECTIGN J FOR PART AMUMBER NP.

READIS o 15000 (INAMES (L oeNCIol=106) o ZZRINCS o XXNSINC)oNC=1,NCS)
FORMAT{ 4AG2X oF6.3,2XeFb6.3)

MAME3 IS THE NAME OF THE NCITH) CONOITION BEING CHECKED.
READ(SoL3CIUIXXRIToNCIel=],o6)eNC=] oNCS)
XXR{1¢NC) 1S THE INPUT CF MCDE 1 OURING CONCIVION MNC.

CO 200D NP=1.NPS
P=MAT(NP)

00 155 1=1,4
TITLE2(1)=NAFE2(1.AP)
CU 16C N=1,5
SINI=SS{N.M?
VYNIN)=VVN{N,P)
BSN{N)I=BBSh(A M)

0G 165 J=1,6

1CG4-00-0136 FORTRAMN SCURCE LIST 3402
SOURCE STATEMENT

AlJ)=ABIJyNP)

U0 1000 NC=1,NCS

00 167 (=1,4
TITLE3(Li=NAME3(1,NC)
IR=ZZRINC)
XNS=XXNSINC)

00 17D 1=1,6
XREL)sXXRE(oNC)

00 180 1=1,6

0C 18D J=1,6
SOXCLeJdd=XRULISHEL o Jol)OALIIOXNM(Y)

"SDY(Lloda=XRELIPHILoJo2)*ALJ)SXNIY)

SOZUloJa=XRELISHIL Je3)SALJ)EXM{J)
SCXeSOYeSUL ARE PARY STRESSES FOR LOACING (N XeYoZ AXES DI(RECTIONS
AK=PERCENT GF MAX(PUP STRESS LEVEL

AK(1)=1.C

DO 192 N=2,5
AKIN)=AKIN-1)-0.025
00 196 N=o,13
AKINI=AKIN-1)-0.05C
OC 156 N=14,17
AKEN)=AKIN-1)-C.1C
0f) 200 J=1,¢

DO 200 1=1,6

00 2C0 h=1,17

SFOXoSFLYobTCo o ARE MAX. STRESSESe FOR X oY oANC Z LGADING.TIMES AX
SFDX(LleNsJi=AKIN)SSCX(l,J)

SFOY(LoNyJ)=AK(N)®S0Y(]1,J)

SFLZlToNeJd)=AKINI®SCL((,J)

EAXoEAYIENL ARE THE APPLIED CYCLES FUK X Y ANC Z-AXES LOAOING.SUB-

SCRUPTS N=PLRCENT LCADING (=MOUE J=RELSPONSEt AX(Sy{.teolux-TRANSLA-
TCON 2=Y-TRANSLAT(CAN S=v-AX1S ROTATION 6=7-AX1S ROTATIUON
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Jele 2 FCELSOM

ISN

220
e21
230
231
232
233
234
235
240
241
<42
243
246
2417
250
251
<%
25%
cS¢

257

2¢3
2¢4
2¢5
2¢6
2¢1
27C
JT1
212
2713

[pXala

[a ¥ o N aN ol ol

225
23C

25C
260

27¢
ico

310

34C2 ¢ FCLELSCn

ISh

2N
300
3l
302
3c3
ICe
305
ice
3¢t
21C
34
15
316
in
220
322
323
34
32
3¢
LA
231
232
123
235
238
37
ELYH
361
342
J4s
345
340
3+C
51
3¢2
53
3154

322

320

34C

350

3389

1CCe-00-013e FCRTRAN SCLRCE LIST 3402 09726766
SOURLE STATEMENT

0C 3C0 I=1,6
KER({L)=122.40FNI1)ONS/IR
D0 300 J=1,0

CO 300 »=1,12

FHX sAKINI®M{l,J001)
Fny sAK{N)IOKF{],4J,2)
FHl SAKINI®HIT 4J,3)

Ir{AeSIrhY).LE.1.CIGO TC 225

ENYINGI 2 J)=X2X{1 )oSCRTIL.0-SCRTI1.004442(1.0-1.0/1FHY®e2))))
GC T1C 230

ENYINo Lo JI=XXXIII]

Ir{ABSIFHL).LE.L.0IGO TC 250

ENZING L pJ)=XXX{])OSURTIL 0~SonT{(1.004440(].(~-1.0/(FH]®®2))))
GC TG 260

ENZINS T U =R2X{TI

IF(ABSIFNX) .LE.1.CIGU TC 270

ENXINGT o J)=xXX{I)OSQRTII cO-SuRTI1.004642(]1.0-1.0/1FHX®9%2})}))
GC T0 300

ENKING L o JI=XXX{])

CCATINUE

CELENXIN: [+ J)=INCREVPENT OF ENX BETREEN N PERCENT AAND (N-1) PERCENT

00 310 1=],6

00 310 J=1,6

DELENXI ) T oJISENXIL ],J)

UELENY I Lo 1 o JIaENYIL,1,J)
DELENZL L1 0J)=ENLIL,]1,4J)

D0 310 N=2,17

DELENXIN T o J)=ENXIN Gl o JI-ENKIN-1,1,J)
DELENVING Lo J)=ENYING I 4 J)-EANYIN-1,1,J)
DELENZING L ¢ J)=ENLING]L 4 J)-EN2IN-1,41,J)

SUMAX=TCTAL AC. CF TIFES A PARTICULAR STRESS LEVEL IS APPLIED NUE
LOAUING ON X-AXIS,AT K § GF MAX.,IN MCO: 1.
FSUX=STRESS LevtlL APPLIFC SUMNX TIMES CUE TC X-LCAUING

18C4—00-0130 FCRTRAN SCUKCE LIST 3402 09726766
SOURCE STATEMENT

V0 322 1=1+6

CC 322 N=1,6

GO 322 k=1,6
SUPNXIKsho 1 )=0.0
SUPNYIK o A,I)=0.0
SUPNZIKsN,1)=0.0
FSOXINKo[)2CoO
FSOYINyK,1)=0,0
FSUZIN.Ke[)=0.0
CCNTINLE

0C 400 N=],17

0C 400 I=1,%

DC 320 J=1,6
AALJ)=DELENXINGT 0 J)
BEI)=SFOXUIsN,J)
CALL SCRT{AA,B0)
CALL SUMIAAIBeCoboJdXeXsYy2)
0C 340 x=]l,JX
SUPNX{KoNyI)=X{K)
FSOXIN Ko 1)=Y(K)
CCANTINUE

L0 350 J=1.6
AALJ)=JELENYINAT 0 J)
BEII=SFOYIIoNoJ)
CALL SCRT{AA,2,06)
CALL SUMIAA89Ce60JYoXyY,2)
DU 370 K=1,JY
SUMNYIK¢No Tl )=x1K)
FSOYINeK I )=YIK)
CUNTINLE

DC 38C J=1,06
AA(JISOELENLZIN,T 0 J)
BUJI=SFOZ{T4NoJ)
CALL SCHRT{AA,E 6]}
CALL SUMIAA29Cob0JdleXeV,si)
00 3%5 K=1,J¢
SULFNZIN Ny Eh2X(R)
FSULINGK LDV K]
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36Ls ¢ FCCeL TN

15h

157

3e2
2¢3
3es
2¢S
31C
371
272
315
376
37
402
«C3
404
4D7
410
411
412
4lé
415
42V
42l
€22
425
42¢
427
432
423
434
437
4«C
44l

(ol aNal o ol

355
¢

«2C

422

425

«3C

440

4“4l

L LY

445

3640c 2 FCCELSCM

ISN

442
444
445
450
451
452
“55
450
457
“t2
4¢3
et
4¢7
47C
471
472
474

677
500
5C1
5C2
5C3
34
5C5
5Cé
<C?
510

S5le
515
tle
s17

2N alalal

(o alal

450

400

L1

“t2

465
47C
60C

65C

1CCs-00-01306 FCRIRAN SCURCE LIST 3402
SULRCt STATEFENT

CONTINLE
CUNTINUE

KUXINGK ol )SHECIPRCCAL GF ALLCWASLE CYCLES wHEN X-AXIS (S LUAOED,AT
N PERCENT LUADING CCHRESPCMUINGL TO THE KITH) STRESS LEVEL.IN MCUE

0C 6CC I=1,6

0C 6CC M=l,17

U0 430 K=l,6

IFCABSIFSDXINGK, [D) LTF.SELDIGL TO 420
ROX(NgK 1 }=].0/VNL])

GC TC 430

IFCABSIFSUXIN K 1)L T.SU3D)GC TC 621

HOXINGK B D= { EFSDXEN,K 1D 7S12))08B5NIL))/7VYNI2)
GL TC 430

IFIABSIFSDE(NGK ID Dl ToSt@DIGC TC 422
ROXENGKo L)l IFSOXINK, [D/S(3))8eBSAIB)/VNID)
GC YC 430

IFIABSIFSOXENKIDD.LT.SIS)IGC TC 425
ROXENGKo B )l (FSUXINGK, 1D/S14))08SNI4) D/ VALS)
GG YC 430

RUX(NeKol )2D.0

CCNTINUE

DO 450 K=]1,6

IFCABSIFSDYIN,K, 1)) LT.SILD)IGC TC 440
ROYINeKoE)=1.0/VNIT)

GC TO 450

FELABSIFSOYINGK )DL TSE3DDIGC TO 4el
ROYINGKo L)l IFSOYIN Ko 1)/7S12))8e8SNIL)D/VNLZ)
GO TC 450

Lo BABSIFSOUYINGK 1) ).LT.SISDIGC (T 442

ROYENGK B )= LIFSOYINGK 1 )/SE3))%sBSAL3)D/VNIZ:
GO TC 450

IFEABSIFSUYINGK, 1) D)oL T.SISIIGE 'TC 445

RUYEINGK B )sEIFSDYIN Ko ) /SE6)I®®3SNIG) D/ VNLG)
GL YC 450

RUY{N¢Ko[)=0.C

IDD4-DD-01 36 FCRTRAN SOURCE LIST 3402
SCURLE STATENMENT

CONTINUE

OC 47D K=1,6

IHIABSIFSUZINGK 1)) .LTL.SEL)IGC TO 460
ROZINKol)=1.0/7VNLL)

GC 1C 470

IFIABSIFSOZINGKo D)oL T.S13))GC TO 461
RUZINGKo L )={(FSDZ{NoKo1)/S12))8%BSNIL2)/VNL2)
GG TC 470

IFIABSIFSUZINGKy 1) ).LT.S14))GC TC 462
RDZ(NoKo b )2l IFSOZEINKoE)/SE3))0eBSNI3)I/VYNLD)
GC Y0 «7C

IFLABSIFSOZINGKy 1) ).LT.SU5))IGD TO 465
RDZINsKol)=slIFSDZINGKoB)/7S14) ) ®8BSNIG))/VNIS)
GC T0 «70

ROZIN¢Ko1)20,D

CUNTINUE

CCNTINGE

OELOOXIN, )TCTAL PART LAPAGE FCR X-AXIS LOADING,AT N PERCENT OF

MCVE .

CU 65C I=1,6

JG 65D N=1,17

DELDDXiN,1)=C.0

OELDOYIN,1)=20.D

LELJUZINGI)=D.D

00 650 Kk=1,6

DELODXIN B )=CELODXINs I ) eRDOXINIKo [ )SSUMNX IK Ao 1])
DELDOYENo B )2ULLUUYENG L) ORUYINGKo L )SSUMNY IKyN,o I}
DELOCZINoI)sCELODZINGI)¢ROZINGKy FD)SSUMNZIK oA, 1)
CUNTINUE

SUMDX( 1)=TOTAL PART CAMAGF l‘ MOOE | FOR X-AXIS LOADING.

CO 675 I=1,¢
SuMDXIE)=D.0
SOMDYI1)=0.0
S0MOZI1)=0.0
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3402 2 FCLeLSCN

ISh

5¢¢
c21
522
5¢3
L)

21
530
531
532
533
534
525
53¢

S4C
4l
42
544
245
546

e?5

[a N o N o Nl

[aXalal

71c

720

[aNalal

-1}

80%

810

3402 2 #TGELSCA

(5h

5¢3
54
5715
eCe
ec?
62¢
621
€32
[3X)
635
€27
€4C

820
£30
840
850

10C0O
2CCC

34C2 2 FOLELSLMN

1SN

1CU4-0u-0136 FCRIRAN SOURCE L(IST 3402 097.°6766
SOURCE STATEBENT

uC 6T N=1,17

SOMOX! ()=SOMCXI1)eCELOOXIN, ()
SOMDY (1 )=SOMCY( 1) +CELDDY(N,I)
SUMBIZ{1)=SURCILTd oLk "2 ins ()
CONTINGE

DLX= TCTAL PART CAMAGE LUE TC X-AX{S LCALINGs URMFING THE ROUAL
UAMAGE .

GOXx=0.0

DOY=0.0

c0l=D.0

00 700 I=}1,6
CCX=COXeSOMODXI ()
CCy=0DYeSOMDY(])
ODI=00Z+SOMOZII)
CUATINUE

COr(1)s TOTAL PART CAMAGE PER MUDE, SUMM{NL THE LLAD AX(S DAMAGL.

0C 710 I=1.6

OOM{(}=G.0

CCNTINUE

OC 720 I=1,6
OCMIT)=DOM{T)eSOPCXIT)eSCRCYIT)eSOMDICT)
CONTINUE

00= TOVAL GF ALL PART CAPAGE DUk TC SPECTRUAM,.

0D=DLX¢0DY+DCZ

aR{TE(O,8D0)TITLEI +TITLER

FORMATUIH] o 47X o 4AL/SI Ro IOMFATIGUE ANALYSTS/4TK4AG/52Ke 1 4HF AT (GUE
20ARAGE /)

wR{TEI6.8C5) LR y4NS

FURMAT(IXy i INSWELP RATE=oF5.2,10Xs I1HNUMBER CF SKEEPS (UP AND OOwN
2)=,F%.2 /)

WRITE(64BECIT(TLED+(PCDELPCOE=1,6)

FURNATU/4T N 4A6/7/5TX ¢ 4HPCOL /3K ¢ THLCADING/4X o 4HAX (S 96112411 Xe 3HSUN

1CC4-CJ-01306 FCRTKAN SCURCE LIST 3402 09/72¢/766
SGURCE STATEPENT

<)
WRITc(64820)({SOMOXI{)el=]1.06),00K)
FURMATIOK o IHX o TX47EL2.3 /)
akITE(E+830)1(SOPOYITNI]1,46),00Y)
FORMAT(OA s IHYTX7E12.3 /)
WR{TE(6+840) ({SOPDL(I)y'-1.4",4uDL)
FORPAT(6X,1H2oTX,7E12.3 /)
aR1Te(66350) LIUUNIT)eixl,40),CD)
FORMATI/5X ¢ INSUPobXoTEL2.3/10-)
CONT {NUL

CONTINLE

GU 10 50

ENO

1CC4-0C-0136 FCRTRAN SCURCE LIST C9/2¢€766
SULRCE STATEPENT

$(BFTC SCRTY

1€00

SUBRCUTINE SCRTIA.B,4N)
OLIPENSICN ALL),BL()

DC 1000 (=2.N

Jl 1000 J=241

JJ=1¢2-J
IFIALJI-1).GEALIJ)) GC TC 1000
AQUN=A(JJ)

gcur=61JJ)
AlJJI=ALSI-1)
8(JJ)=8lJJI-1)
AlJJ-1)=ADUN
8(JJ-1)=00Un

CCNTINUE

RETUKN

END
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JaCe 2 FLLELSLH 1CCe=-0u~01 36 FGRYRAN SCLACE LIESY €9/26/66
(St SLURCE SYATEPENT
G $t1erTC SLM
1 SLARLLTINE SLMIA,B,CoReJCoXoY,o )
2 UIFERNSION AC10,E100 U1 0 R0, YERE,200)
3 x(10=AC1¢
™ Ye1)=8011¢
S 201¢=CC 1)
6 JC= ¢
7 OC 2000 (=2,M
1C 1F(Al11-1).EC.A11C) CC IC 1000
13 JC=JCe]
14 X(JC)=all)
15 YOILE=Y(JC~1)eB11)
| T3 Z1JC)=2(JC-102eCU1 ¢
17 6C YC 2000
G 1CCO v(JCi=Y1JC(eBLIC
il 21JCe=214CceC11¢
é2 2090 CCMNTINUE
26 RE TUKM
25 (1Y)

IBM 7040 INPUT FORM - 80 COLUMN
FOMM TMC (349 REv *08

e o x — et T [mr

2
}

4 M Sp—— N T = T T = 1 v T M
123 4546 183 01l ZIBWS 6178 150 12700 57 P ABDI L TINSE VB 404 Q40N 4647 @ SIS 3456 SR HROR 2 56 PRI 2 T8 KT R

TITLE ] o
JE D W O W
N | NOL2TD) 16,1)
IS Wt RS T ST T OTE e WO N T I e W w e e
18 CARDS, AMPLIFICATION FACTORS *
A4 &1 a4 812 aaax a0 pdoaso2oaagopaogpptxax o al8o8o0ao0 02041t 418 44 QA% s a4 g4 4L R A A il A% Ay
Al a4 434 d AL Ld)yld LA i s 1§14 8ay A1 440 s 0 a4 b4t a8 g2 A gk iyl d 4K gt t% 224 s 422
N(6,1,3) | N(6,2,3) | H(633) "“4” N“@”IN“LM
Y U W A0 ¢ 2 2 3 4 L £ 1131 ) 11} Al 2t N T W S 1O WO 5 U O O 5% W W O IO O W B W O W O T O W O B W W
FR(1) FNQ) FNQ) EN @) l FN(5) ] FN @)
e el el e T TS T e e TN T TSN TR W W
YEIGHT | o), 91, | #l, |WEIGHT & WEIGNT MOMENTS OF INERTIAS
TNy B | L 42 L 4 AL A2 4 a1 toal I NN A L1 13 21t J_L i A & ). 01 3¢ 14§ 4go 3 41 442 84 Qg 202N 4 L4 L]
$S(11) $SQ.1 (1 $$(4,1) l $SG.1 ] NMATS CARDS
Lo a2 s b g a a0 s By oo a1k tso a0 ) oaa s b s x a2 8otogs ot ads gl A 0 % 2 2 4 88 A A3 %A 3 & LA
ORDINATES OF S-N
LA x a4 a b A8l 2188 g 1) ISR NSOl NN 41 40 42 A8 2Ly
$S (1,M) SSQ.M) $S(3.m) $S (4.M SS(S.M) CURVES
L4 24 A 4 4 423k i U U WY A 42 410§ &4 a) AL 4t 1 3 4 41 il 3 4 90 8 5 2 4 ) 1313 4.4 2. 3.1 122121241
YYN(L1) YVN(S,1) NNTS CARDS
NN T TSNS PN S SO TSNP EUO SN SN N S W ! Al s L2 0 b a2 i 2 ksl
“SCISSAS OF &N CUlVES
A4 i 44 doagoApa ) Ao s da b4 g £ (04 18 L QA h gt bgFbo) Ll gy U NEE W A4 4 3 222 2 & %0 L8 Ay
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Appendix B

EXAMPLE PROBLEM

This analysis was conducted on the LEM
PS/TCA, Reaction Control System aft engine
support structure. In this structure, static
stress analysis indicated that the most highly
stressed points were on adjacent pieces of
structure loaded simultaneously by a single
bolt. While the stress of one of the parts was
only 94 percent of the stress in the other part,

they were of different materials and, therefore,

both were analyzed. A schematic of this as-
sembly, with the critical loading, is shown in
Fig. B-1.

MAGNIFICATION "FACTORS

Since the input is applied sequentially along

each of the three reference axes, three matrices
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of magnification factors result, one for each

axis of loading:

X-Axis Loading

H

ril

+2.59

1.10
+1.65
J 2.70

+0.31

-0.52 +0.46
-1.17 0.76

+2.40 -2.77

-0.81

-0.15 -0.14

1.71

| 0.21 0.12 0.07

-0.33

-0.63

0.73

0.25

-0.13
-1.12
+0.36

0.99

+0.04

0.03

-0.09
-0.74
+0.31

0.63
-0.03

-0.05 |




Y-Axis Loading

{Hri 2] =

[-0.52 2.43

-1,17 +1.02
+2,40 +4.32
-0.80 +0.50

-0.13 6.37

| 0.10 2.87

Z-Axis Loading

[4+0.46
0.76
-2.77
1.72

-0.13

| 0.06

-1.86
-0.20
-4.85
-1.79

6.03

1.88

-1.86
-0.20
-4.84
-1.79

6.03

1.88

+2.24
1.18
5.84
1.46
5.70

1.60

NATURAL FREQUENCIES

1.42
-0.38
-1.10
-0.18
-0.11

-0.10

-1.32
0.37
1.29
0.29

-0.11

-0.06

-3 TUBE (2219-T85101

Fig. B-1, Schematic of LEM
PS/TCA cluster mount

0.07
+0.12
+0.20
-0.30
-0.66

0.60

-0.06
-0.08
-0.24

0.66
-0.63

0.35

0.08 |
+0.08
+0.33
-0.20

0.68

-0.99 |

-0.07 |

-0.05

-0.38
0.43

0.65

-0.58

The six calculated modal frequencies are
listed below.
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Mode F, (cps) lL Mode F,, (cps)
1 57.1 4 113.3
2 69.6 5 173.6
3 96.7 6 200.8
MASS MATRIX

In this problem, the input spectra are in
units of g. The mass matrix is, therefore,
written in terms of the cluster weight and
weight moments of inertia:

and

w= 25Ib,
Ix = 318 pSi,
I, = 592 psi, and
I, = 591 psi,
25
25
25
318

591
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STRESS COEFFICIENT MATRIX

A static stress analysis yielded the follow-
ing stress coefficient matrices for the two parts
(see Eq. (26)):

-15 Spacer
N
AiJ e
[0.1339 ]
-14.6
0.3842
18.86 |
1.653
L 2.423 |
-3 Tube
K
Ai] .=
[0.1258 ]
-13.1
0.3608
17.11 '
1.55
2.275
L -t

INPUT SPECTRA

Three sinusoidal spectra, shown in Fig,
B-2, are applied sequentially in x-, y-, and
z-axis directions. These spectra are logarith-
mically swept at the rates, and for the number
of times, shown in Table B-1,

T A T T T T T T l
REFERENCE LSP-310- 20 AMENDMENT 3. TAMLE '1'
LAUNCH AND 8008T
] L 1.3
SPACE FLIGHT g
LOAD / o
FACTOR v =34
¥ )7, P
4 e
Y P
A
LURAR EXCURSION
0 100 200 300 400 500
F(CPS)

Fig. B-2. Sinusoidally applied
load factors qualification test

TABLE B-1
Sweep No. of
iﬁfn. Spadition (ocl::.:is/ %v[v;eig:
min) Down
1 Launch and boost 3 2
2 Space flight 1.5 2
3 Lunar excursion 0.5 2

DATA SHEETS

Completed data input sheets are shown in
Fig. B-3.
RESULTS

The damage resulting from the three load-
ing conditions for the -15 spacer and the -3 tube
are shown in the following printout. The total
damage for the -3 tube is

D = 0.01925 + 0.00104 + 0.00002 = 0.02031,

and for the -15 spa<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>